Descriptive Statistics D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\SAG.DBF

Variable Name is AREA

Percentiles:		Tukey Five Number Summary:
0.0% = 0.25	Minimum	Minimum = 0.25
0.5% = 0.25		Fourth = 1.125
2.5% = 0.25		Median = 4.125
10.0% = 0.50		Fourth = 12.875
25.0% = 0.937	5 Quartile	Maximum = 118.75
50.0% = 4.125	Median	
75.0% = 13.81	25 Quartile	
90.0% = 66.92	499	
97.5% = 118.7	5	
99.5% = 118.7	5	Test for normality results:
100.0% = 118.7	5 Maximum	$D = .342$ $p \le 0.001$

Five number summary was calculated using the technique from UNDERSTANDING ROBUST AND EXPLORATORY DATA ANALYSIS by Hoaglin, Mosteller And Tukey. See complete reference in WINKS manual.

Confidence Intervals about the mean:

```
80 % C.I. based on a t(19) critical value of 1.33 is (7.20555, 25.01945) 90 % C.I. based on a t(19) critical value of 1.73 is (4.52677, 27.69823) 95 % C.I. based on a t(19) critical value of 2.1 is (2.0489, 30.1761) 98 % C.I. based on a t(19) critical value of 2.54 is (-0.89776, 33.12276) 99 % C.I. based on a t(19) critical value of 2.87 is (-3.10775, 35.33275)
```

The normality test suggests that the data are not normally distributed. The test for normality is a modified Kolmogorov-Smirnov test based on papers by Lilliefors and Dallal & Wilkinson. References in latenews.txt.

Sag River Closures — Area

AREA

Descriptive Statistics D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\SAG.DBF

Variable Name is HEIGHT

```
Percentiles:
                                     Tukey Five Number Summary:
0.0\% = 5.60 Minimum
                                     Minimum = 5.60
0.5%
           = 5.60
                                     Fourth = 16.80
2.5%
          = 5.60
                                     Median = 36.15
          = 7.57
10.0%
                                    Fourth = 67.35
          = 16.30 Quartile
                                   Maximum = 284.20
25.0%
          = 36.15 Median
50.0%
          = 70.274990uartile
75.0%
90.0%
           = 96.40
          = 284.20
97.5%
99.5%
          = 284.20
                                     Test for normality results:
100.0%
          = 284.20 Maximum
                                     D = .218 p = 0.014
```

Five number summary was calculated using the technique from UNDERSTANDING ROBUST AND EXPLORATORY DATA ANALYSIS by Hoaglin, Mosteller And Tukey. See complete reference in WINKS manual.

Confidence Intervals about the mean:

```
80 % C.I. based on a t(19) critical value of 1.33 is (35.09443, 71.51557) 90 % C.I. based on a t(19) critical value of 1.73 is (29.61757, 76.99243) 95 % C.I. based on a t(19) critical value of 2.1 is (24.55147, 82.05853) 98 % C.I. based on a t(19) critical value of 2.54 is (18.52692, 88.08308) 99 % C.I. based on a t(19) critical value of 2.87 is (14.00851, 92.60149)
```

The normality test suggests that the data are not normally distributed. The test for normality is a modified Kolmogorov-Smirnov test based on papers by Lilliefors and Dallal & Wilkinson. References in latenews.txt.

Sag River Closures — Height

HEIGHT

Linear Regression and Correlation

D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\SAG.DBF

Dependent variable is HEIGHT, 1 independent variables, 20 cases.

Variable	Coefficient	St. Error	t-value	p(2 tail)
Intercept	24.638755	7.9170101	3.1121288	0.006
AREA	1.7791308	.2374424	7.4928949	<.001

R-Square = 0.7572 Adjusted R-Square = 0.7437

Analysis of Variance to Test Regression Relation

Source	Sum of Sqs	df	Mean Sq	F	p-value	
Regression Error	53945.319 17295.256	1 18	53945.319 960.84755	56.143474	<.001	
Total	71240.575	 19				

A low p-value suggests that the dependent variable HEIGHT may be linearly related to independent variable(s).

MEAN X = 16.112 S.D. X = 29.95 CORR XSS = 17042.68 MEAN Y = 53.305 S.D. Y = 61.233 CORR YSS = 71240.57 REGRESSION MS= 53945.319 RESIDUAL MS= 960.848

Pearson's r (Correlation Coefficient) = 0.8702

The linear regression equation is: HEIGHT = 24.63876 + 1.779131 * AREA

Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (two-tailed test) t = 7.49 with 18 degrees of freedom p <= .001

Note: A low p-value implies that the slope does not = 0.

Correlation Coefficients D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\SAG.DBF

Variables used : AREA and HEIGHT

Number of cases used: 20

Pearson's r (Correlations Coefficient) = 0.8702 R-Square = 0.7572

Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0

(Pearson's) t = 7.492895 with 18 d.f. p < 0.001 (A low p-value implies that the slope does not = 0.)

Spearman's Rank Correlation Coefficient = 0.8473

Linear Regression and Correlation

D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\SAG.DBF

Dependent variable is LOGHEIGHT, 1 independent variables, 20 cases.

Variable	Coefficient	St. Error	t-value	p(2 tail)
Intercept	2.8202966	.1502618	18.769224	<.001
LOGAREA	.4893187	.0678063	7.216422	<.001

R-Square = 0.7431 Adjusted R-Square = 0.7289

Analysis of Variance to Test Regression Relation

Source	Sum of Sqs	df	Mean Sq	F	p-value	
Regression Error	13.371723 4.621852	1 18	13.371723 .2567696	52.076747	<.001	
Total	17.993575	19				

A low p-value suggests that the dependent variable LOGHEIGHT may be linearly related to independent variable(s).

MEAN X = 1.456 S.D. X = 1.714 CORR XSS = 55.847 MEAN Y = 3.533 S.D. Y = .973 CORR YSS = 17.994 REGRESSION MS= 13.372 RESIDUAL MS= .257

Pearson's r (Correlation Coefficient) = 0.8621

The linear regression equation is:
LOGHEIGHT = 2.820297 + .4893187 * LOGAREA

Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (two-tailed test) t = 7.22 with 18 degrees of freedom p <= .001

Note: A low p-value implies that the slope does not = 0.

